M463 Homework 14

Enrique Areyan
 July 11, 2013

An item is selected randomly from a collection labeled $1,2, \cdots, n$. Denote its label by X. Now select an integer Y uniformly at random from $\{1,2, \cdots, n\}$. Find:
a) $E(Y)$;

Solution: Using the double expectation formula: $E(Y)=E(E(Y \mid X))$. Note that $Y \mid X$ is distributed uniformly on $\{1, \cdots, X\}$, where we think of X here as a fixed value. Therefore, $E(Y \mid X)=\frac{X+1}{2}$, so,

$$
E(Y)=E(E(Y \mid X))=E\left(\frac{X+1}{2}\right)=\frac{E(X)+1}{2}=\frac{\frac{n+1}{2}+1}{2}=\frac{\frac{n+3}{2}}{2}=\frac{n+3}{4}
$$

b) $E\left(Y^{2}\right)$;

Solution: As in part a): $E\left(Y^{2}\right)=E\left(E\left(Y^{2} \mid X\right)\right)$. Note that second moment of Y is the same as the second moment of a uniform distribution on $\{1, \cdots, X\}$, where, again, X is fixed. We derived in class the second moment of a uniform distribution. Apply this to: $E\left(Y^{2} \mid X\right)=\frac{2 X^{2}+3 X+1}{6}$, so,

$$
\begin{gathered}
E\left(Y^{2}\right)=E\left(\frac{2 X^{2}+3 X+1}{6}\right)=\frac{1}{6}\left[2 E\left(X^{2}\right)+3 E(X)+1\right]=\frac{1}{6}\left[2\left(\frac{2 n^{2}+3 n+1}{6}\right)+3\left(\frac{n+1}{2}\right)+1\right] \\
=\frac{1}{6}\left[\frac{4 n^{2}+6 n+2+9 n+9+6}{6}\right]=\frac{4 n^{2}+15 n+17}{36}
\end{gathered}
$$

c) $S D(Y)$;

Solution: $\operatorname{Var}(Y)=E\left(Y^{2}\right)-E(Y)^{2}=\frac{4 n^{2}+15 n+17}{36}-\left(\frac{n+3}{4}\right)^{2}=\frac{4 n^{2}+15 n+17}{36}-\frac{n^{2}+6 n+9}{16}$ $=\frac{16 n^{2}+60 n+68-9 n^{2}-54 n-81}{144}=\frac{7 n^{2}+6 n-13}{144}$. Therefore, $S . D .(Y)=\sqrt{\frac{7 n^{2}+6 n-13}{144}}$
d) $P(X+Y=2)$.

Solution: Since both X and Y take integers values starting from 1, the only way the sum can be equal to 2 is if both X and Y are 1. Hence,

$$
P(X+Y=2)=P(X=1, Y=1)=P(Y=1 \mid X=1) P(X=1)=1 \cdot \frac{1}{n}=\frac{1}{n}
$$

Note that $P(Y=1 \mid X=1)=1$ since if $X=1$ then Y only takes the value 1 .

